Objectives: SWBAT (Graph Exponential Functions)

Main Ideas:	Assignment:		
	Parent Function: $f(x)=b^{x}, b>1$ Type of Graph: Continuous and one-to-one Increasing or Decreasing: $\uparrow(-\infty, \infty)$	Domain: $(-\infty, \infty)\left\{\text { all real } \#^{\prime} \boldsymbol{s}\right\}$ Range: $(0, \infty) \text { or } f(x)>0$ Asymptote: x-axis or line $(y=0)$ Intercept(s): $y \text {-int at }(0,1)$ Max/Min: N/A	

Grexphing Exponentialls- 6.0

Discovering Ezterp's numberp - 6.1

Topic: Compound Interest and Constant e Date:

Objectives: SWBAT (Identify and Discover constant e and use Compound Interest)

Find the amount of money after 5 years in an account that started with $\$ 1000$ and
put into an account with an interest rate of 4.5% compounded continuously.

logexpithms athe Gheir Grexphs - 6.2

Objectives: SWBAT (Evaluate Logarithm Expressions and Graph Logarithms)

logexpithmes and Gheir Greaphs - 6.2

	Evaluate $\log _{16} 4=y$	Evaluate $\log _{3} 81$
20	Evaluate $\log _{3} 243=y$	Evaluate $\log _{10} 1000$
	Parent Function: $f(x)=\log _{b} x$ Type of Graph: Continuous, one-to-one Domain: $(0, \infty) \text { or } x>0$ Range: $(-\infty, \infty) \text { or all real \#'s }$ Asymptote: $y \text {-axis of line } f(x)=0$ Intercept(s): $x-\text { int at }(1,0)$ Max/Min:	

logexpithmis and Gheir Grexphs - G.2

$$
f(x)=a \cdot \log _{b}(x-h)+k
$$

$\underline{h \text {-value (Horizontal Translation) }}$
$-$
$\checkmark \quad h$ units right if h is positive
$\checkmark \quad|h|$ units left if h is negative
$\checkmark \quad$ If $a<0$, it is reflected over the x-axis

Parent is $f(x)=\log _{2} x$
\underline{k}-value (Vertical Translation)
$\checkmark \quad k$ units up if \boldsymbol{k} is positive
$\checkmark \quad|k|$ units down if \mathbf{k} is negative
a-value (Orientation and Shape)
$\checkmark \quad$ If $|a|>1$, vertically stretch
$\checkmark \quad$ If $0<|a|<1$, vertically compresseed

$$
f(x)=4 \log _{2}(x-7)+5
$$

$a=$
$b=$
$c=$
$\boldsymbol{d}=$

Graph the function $f(x)=\frac{1}{3} \log _{6} x-1$
Identify the parent:

Identify parts:

Topic: Solving Logarithmic Equations

Objectives: SWBAT (Solve Logarithmic Equations using the corresponding Exponential Eq.)

Objectives: SWBAT (Simplify and evaluate expressions using properties of LOGs)

Main:	Altemment:
	HAWS OF LOGS

Objectives: SWBAT (Use Droperties of Logarithms to Evaluate and Solve)

Main	Assignment:	
	Solve. $\quad \log _{4}\left(x^{2}-30\right)=\log _{4} x$	Solve.

Given that $\log _{5} 6 \approx 1.1133$, approximate the value of $\log _{5} 216$.

Given that $\log _{4} 6 \approx 1.2925$, what is the approximate value of $\log _{4} 1296$?

	Solve. $4 \log _{2} x-\log _{2} 5=\log _{2} 125$		Solve.$2 \log _{3}(x-2)-\log _{3} 6=\log _{3} 150$	
	Solve.	$\log _{6} x+\log _{6}(x-9)=2$	Solve	$2 \log _{7} x=\log _{7} 27+\log _{7} 3$

Common logempithmes - 6.6

Objectives: SWBAT (Solve Exponential Equations using Common Logarithms)

Berse "G" and herturrenl loG-6.7

Tomic: Base ${ }^{\circ} e^{\bullet \bullet}$ and Natural IOG Date:

Objectives: SWBAT (Evaluate Expressions and Solve Equations with Base e and IN)

Main Ideas:	Assignment:	
	The function $f(x)=e^{x}$ is used to model conti The function $f(x)=e^{-x}$ is used to model con The inverse of a natural base exponential fu logarithm can be written as $\log _{e} x$, but is mo Exponential Growth	ous exponential growth. uous exponential decay. tion is called the natural logarithm. This often abbreviated as $\ln x$. Exponential Decay
	Write an equivalent logarithmic equation for $e^{x}=23$.	Write an equivalent logarithmic equation for $e^{4}=x$.
	What is $e^{x}=15$ in logarithmic form?	What is $e^{4}=x$ in logarithmic form?
	Write $\ln \boldsymbol{\sim} \approx 1.2528$ in exponential form.	Write $\ln 25 \approx x$ in exponential form.
${\underset{5}{2}}_{5}^{5}$	Write $\ln \boldsymbol{x} \approx 1.5763$ in exponential form.	Write $\ln 47=x$ in exponential form.

Continuously Compounded Interested

$$
A=P e^{r t}
$$

A = Ending Amount of Money
$t=$ amount of time in years in account
$r=$ annual percentage rate
$P=$ Principal or Beginning amount invested

Suppose you deposit $\$ 700$ into an account paying 3% annual interest, compounded continuously. What is the balance after 8 years?

Suppose you deposit $\$ 700$ into an account paying 3% annual interest, compounded continuously. How long will it take for the balance in your account to reach at least $\$ 1200$?

Suppose you deposit $\$ 700$ into an account paying 6\% annual interest, compounded continuously. How long will it take for the balance in your account to reach at least $\$ 2500$?

Using Expo and loG Fumetions - 6.8

Topic: Using Exponential and Logarithmic Functions

Objectives: SWBAT (Use Iogarithms to solve problems with expo growth and decay.)

Aain	Assignment:	
ldeas:	Solve $6+4 e^{-x}=12$. Round to the nearest ten-thousandth.	Write an equivalent logarithmic function for $e^{6}=y$.

| The half-life of radioactive iodine used in medical studies is 8 hours. What is the value of k |
| :--- | :--- | :--- |
| for radioactive iodine? |

