Perfect Squares and Cubes - Pre-1

Topic: GCF and LCM

Date:

Objectives: SWBAT (Identify Perfect Square and Perfect Cubes....and find roots)

lain deas:	Assignment:									
	Find the first 30 perfect squares by hand:									
	1 ² =	$2^2 =$	$3^2 =$	4 ² =	5 ² =					
	6 ² =	$7^2 =$	8 ² =	9 ² =	10 ² =					
	11 ² =	12 ² =	13 ² =	14 ² =	15 ² =					
	16 ² =	17 ² =	18 ² =	19 ² =	20 ² =					
	21 ² =	22 ² =	23 ² =	24 ² =	25 ² =					
Ŋ	26 ² =	27 ² =	28 ² =	29 ² =	30² =					
t Square	V16	Simplify each expression: $(-4)^2 = $ $(4)^2 = $ of 4 is 16, and the of -4 is 16. Therefore, the So the of 16 can be or The expression or symbol means the or root of 16. Since the expression means both and roots of 16, you can us the symbol to indicate roots so your answer looks like this: We only use this symbol if we use the square root to SOLVE								
rfee	$\sqrt{25}$, read "the so under the radical	quare root of 25 or radica	l 25," means "what va	lue was squared?" to	o give us the value					

$$\sqrt{25} = \sqrt{5 \cdot 5} = \sqrt{5^2} = 5;$$
 $\sqrt{36} = \sqrt{6 \cdot 6} = \sqrt{6^2} = 6;$ $\sqrt{100} = \sqrt{10 \cdot 10} = \sqrt{10^2} = 10;$

$$\sqrt{a^2} = \sqrt{a \cdot a} = \sqrt{(a)^2} = a; \qquad \sqrt{a^6} = \sqrt{a^3 \cdot a^3} = \sqrt{(a^3)^2} = a^3; \qquad \sqrt{m^{16}} = \sqrt{m^8 \cdot m^8} = \sqrt{(m^8)^2} = m^8$$

 \sqrt{a} is called a **radical**, *a* is called the **radicand**.

Examples:

$$\sqrt{121}$$
 $\sqrt{y^{20}}$ $\sqrt{81}$

$$\sqrt{x^{36}}$$
 $\sqrt{225}$ $\sqrt{0}$ and $\sqrt{1}$

	$\sqrt{(2x+7)^2}$	$\sqrt{(x^2+3x-7)^4}$					
ð ð							
Upp Lev	$\sqrt{(x-3)^6}$	$\sqrt{(x^2-x-1)^2}$					
	When a radical contains an expression that is not a perfect root, for example, the square root of 3 or						
erfect	cube root of 5, it is called an <u>irrational number</u> . Sometimes it is convenient to leave square roots in radical form (exact answer from) instead of using a calculator to find approximate answer form . Look for perfect squares (i.e., 4, 9, 16, 25, 36, 49,) as factors of the number that is inside the radical sign (radicand) and take the square root of any perfect square factor. Multiply the root of the perfect square times the reduced radical.						
on-P es	General Rule for Products of Radicals: $\sqrt{ab} = \sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$						
îng N Squar	Example: $\sqrt{20} = \sqrt{4 \cdot 5} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}$						
Simplify	Steps: #1 – Break the root down into a product of two roots (one of them being a perfect-square) #2 – Simplify the perfect-square and write it as a product with the non-perfect root $\sqrt{12}$ $\sqrt{x^3}$						
	√50	$\sqrt{18}$					
	$\sqrt{m^3}$	$\sqrt{45}$					
ples	$\sqrt{x^5}$	√200					
XCIM	√32	$\sqrt{162x^3}$					
	$\sqrt{63x^7m^4}$	$\sqrt{144x^5my^9}$					
	$\sqrt{(x+7)^2(x-1)}$	$\sqrt{x^2(x-6)(x+2)(x+1)^4}$					

Fei	46CG 5	quares	ana (Tupes -	pre-1		
	Find the first 10 p $\mathbf{1^3} =$	erfect cubes by hand: $2^3 =$	3 ³ =	4 ³ =	5 ³ =		
bes	6 ³ =	7 ³ =	8 ³ =	9 ³ =	10 ³ =		
	Evaluate the follow	wing expressions: $(2)^3 =$		$(-2)^3 =$			
erfe	What do you notic	e?					
P.	So thinking about squaring and square root where there were two answers for the square root of one valuewhat will this tell us about cube root? (Hint: $\sqrt[3]{8} =$ and $\sqrt[3]{-8} =$)						
	$\sqrt[3]{125}$, read "the cub $\sqrt[3]{125} = \sqrt[3]{5 \cdot 5 \cdot 5} =$	e root of 25," means what $\sqrt[3]{5^3} = 5;$	at value was cub $\sqrt[3]{100}$	ed to give us the value $\overline{0} = \sqrt[3]{10 \cdot 10 \cdot 10} = \sqrt[3]{10 \cdot 10}$	under the radical sign. $\sqrt{10^3} = 5$		
¥	$\sqrt[3]{a^3} = \sqrt[3]{a \cdot a \cdot a} =$	$\sqrt[3]{(a)^3} = a;$	$\sqrt[3]{a^6}$	$a^3 = \sqrt[3]{a^2 \cdot a^2 \cdot a^2} = \sqrt[3]{(a^2 \cdot a^2)}$	$\overline{(a^2)^3} = a^2$		
6 R 00	What do you notice a	about a^6 ?					
Cul	Is there a general rule you could make for variable expressions with exponents and finding their square root or cube root?						
	How would you know if something is a perfect square? Perfect Cube? How about Perfect fourth root?						
G		$\sqrt[3]{64x^3y^9}$		$\sqrt[3]{-8x^6y^6}$	$\overline{\partial_Z^{12}}$		
Lev		3/4 - 5 - 4		3/	<u></u>		
ipper ell		$\sqrt{16x^3yz^4}$		$\sqrt{(x+y)}$)3		
les - C as w	3 V	$\sqrt{250x^7y^2z^3}$		$\sqrt[3]{(x-2)^6}$	$(c + 1)^3$		
duisx		∛216		$\sqrt[3]{(x^2+9x)}$	- 3) ³		
H							