Perffect Squerres and Cubes - Pree-1

Objectives: SWBAT (Identify Derfect Square and Derfect Cubes....and find roots)

Main Ideas:	Assignment:				
	Find the first 30 perfect squares by hand:				
	$1^{2}=$	$2^{2}=$	$3^{2}=$	$4^{2}=$	$5^{2}=$
	$6^{2}=$	$7^{2}=$	$8^{2}=$	$9^{2}=$	$10^{2}=$
	$11^{2}=$	$12^{2}=$	$13^{2}=$	$14^{2}=$	$15^{2}=$
	$16^{2}=$	$17^{2}=$	$18^{2}=$	$19^{2}=$	$20^{2}=$
	$\begin{array}{llll}21^{2}= & 22^{2}= & 23^{2}= & 24^{2}= \\ 26^{2}= & 27^{2}= & 28^{2}= & 25^{2}= \\ \end{array}$				
9					
		Simplify each expression: $(4)^{2}=$ \qquad $(-4)^{2}=$ \qquad So the \qquad of 4 is 16 , and the \qquad of -4 is 16 . Therefore, the symbol \qquad of 16 can be \qquad \qquad The expression or expression means both means the \qquad or root of 16 . Since the the symbol \qquad to indicate \qquad roots so your answer looks like this: \qquad We only use this symbol if we use the square root to SOLVE.			

$\sqrt{25}$, read "the square root of 25 or radical 25 ," means "what value was squared?" to give us the value under the radical sign.
$\sqrt{25}=\sqrt{5 \cdot 5}=\sqrt{5^{2}}=5 ; \quad \sqrt{36}=\sqrt{6 \cdot 6}=\sqrt{6^{2}}=6 ; \quad \sqrt{100}=\sqrt{10 \cdot 10}=\sqrt{10^{2}}=10 ;$
$\sqrt{a^{2}}=\sqrt{a \cdot a}=\sqrt{(a)^{2}}=a ; \quad \sqrt{a^{6}}=\sqrt{a^{3} \cdot a^{3}}=\sqrt{\left(a^{3}\right)^{2}}=a^{3} ; \quad \sqrt{m^{16}}=\sqrt{m^{8} \cdot m^{8}}=\sqrt{\left(m^{8}\right)^{2}}=m^{8}$
$\sqrt{\boldsymbol{a}}$ is called a radical, a is called the radicand.
Examples:
$\sqrt{121}$
$\sqrt{y^{20}}$
$\sqrt{81}$
$\sqrt{x^{36}}$
$\sqrt{225}$
$\sqrt{0}$ and $\sqrt{1}$

Perffect Squerres and Cubes - Pree-1

Perifect Gubes	Find the first 10 perfect cubes by hand: $\mathbf{1}^{3}=$ $2^{3}=$ $6^{3}=$ $7^{3}=$ Evaluate the following expressions: $(2)^{3}=$ What do you notice? So thinking about squaring and square root whe of one value....what will this tell us about cube r	$\begin{array}{ll} 4^{3}= & 5^{3}= \\ 9^{3}= & 10^{3}= \end{array}$ $(-2)^{3}=$ e there were two answers for the square root root? (Hint: $\sqrt[3]{8}=\quad$ and $\sqrt[3]{-8}=$)
	$\sqrt[3]{125}$, read "the cube root of 25 ," means what value w $\sqrt[3]{125}=\sqrt[3]{5 \cdot 5 \cdot 5}=\sqrt[3]{5^{3}}=5 ;$ $\sqrt[3]{a^{3}}=\sqrt[3]{a \cdot a \cdot a}=\sqrt[3]{(a)^{3}}=a ;$ What do you notice about a^{6} ? Is there a general rule you could make for variable expr root or cube root? How would you know if something is a perfect square?	was cubed to give us the value under the radical sign. $\begin{aligned} & \sqrt[3]{1000}=\sqrt[3]{10 \cdot 10 \cdot 10}=\sqrt[3]{10^{3}}=5 \\ & \sqrt[3]{a^{6}}=\sqrt[3]{a^{2} \cdot a^{2} \cdot a^{2}}=\sqrt[3]{\left(a^{2}\right)^{3}}=a^{2} \end{aligned}$ ressions with exponents and finding their square Perfect Cube? How about Perfect fourth root?
	$\sqrt[3]{64 x^{3} y^{9}}$	$\sqrt[3]{-8 x^{6} y^{9} z^{12}}$
	$\sqrt[3]{16 x^{5} y z^{4}}$	$\sqrt[3]{(x+7)^{3}}$
	$\sqrt[3]{250 x^{7} y^{2} z^{3}}$	$\sqrt[3]{(x-2)^{6}(x+1)^{3}}$
	$\sqrt[3]{216}$	$\sqrt[3]{\left(x^{2}+9 x-3\right)^{3}}$

